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-,! . Abstract

The determination of production lot sizes and the assignment of

| astorage Qpa.ce in a warehouse for the produced items are usually treated

5 as two separate problems: The former providing input (space needed) to

k the latter. In this paper, we treat the decision problems as one with
the objective of minimizing total setup, inventory carrying, and ware-
house material handling cost. We treat the minimum material handling

| cost as a continuous function of the lot sizes and develop an algorithm

- | for finding locally optimal solutions of the derived optimization problem.

Computational experience is provided and applications to automated

warehousing systems are discussed.
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1. Introduction

In any automatic warehousing system utilizing computer-controlled a
stacker cranes for high volume material handling, & rather broad class ]
of decision problems can be identified. The function of the system is
the automatic control of the storage and retrieval of items in a warehouse.
As is briéfly described in (4], and (6], imcoming items are assigned to
pallets, perhaps several items to a pallet, and then & minicomputer
assigns the pallet to a location in the storage racks. The pallet‘
contents and its location are recorded in computer memory. The material
handling is done by automatic stacker cranes.

When a request for an item in storage is received, the computer
obtains the pallet location address from computer memory and the stacker
crane retrieves the pallet., Once the material is removed from the pillet,
the pallet may be stored for future use if it is empty, or returned to the
storage location if it still conteins items.

Decision problems assocliated with automatic warehousing systems are
clasgified in (6] as design and scheduling.  Design questions involve such %

L

things as the number of stacker cranes to be used, the physical dimensions

of the storage bays, the number of storage bays, and perhaps even the
physical dimensions of the warehouse.

Scheduling questions involve pallet assignment (assigning items to
pallets), storage assignment (assigning loaded pallets to storage locations),
amd interleaving (t_he sequencing rules for storage and retrieve requests).

It is clear that design and scheduling questions should be addressed
simultaneocusly to obtain the most benefit from the automatic warehousing

systen.
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ieveral recent papers [ 4], {6), [7] have addressed the storage
anasigmment problem, with the objective of assigning items to storage
locations in nrder to minimize total material handling time or cost.
in r6) several storage assignment rules are compared under the assumption
of no interleaving. In L], the analysis is extended to the case with
interleaving. Heskett 7S] proposed that inventory items should be
assigned to storage locations according to the cube order index (COI)
rule, The COI is the ratio of the space required per item and the order
frequency of the item. An application of the use of the COI rule can be
found in [7]. It has been shown [ 3], that if a certain "factoring
assumption"” holds, the COI rule will minimize total material handling cost
(or time). An underlying assumption in the above references is that the
quantities of each particular class of items to be stored is known
apriori.

In a production setting, the amount of product warehouse space
needed for a particular item is traditionally determined on the basis of
inventory and production cost consideratioms, As an example, if a
company is using economic order quantity analysis to determine production
lot sizes, then the production quantity decisions resulting from this
analysis will determine the amount of warehouse space which must be
allocated to each product. Thus, ‘traditionally, the production lot size
decisions and the warehouse allocation decisions are treated independently,
the former providing information (space needed) to the latter.

This paper concerns treating these two decision problems as one.

That is, to analyze the problem of determining order quantities for

several products and decision rules for allocating warehouse space for
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these products in order to minimize total production cost, inventory
carrying cost and material handling cost. Thus, in a sense we are
expanding the definition of "scheduling” as given in (4] and [6] to
include the simultaneous determimation of production lot sizes and storage
locations for final products.

In a recent paper, Wilson {13) addressed the above problems, but
treated the allocation problem as a discrete problem. That is, he
assuped a finite number of locations in the warehouse and treated the
space allocation problem as an assigmment problem. In treating the
space allocation problem in this fashion, a problem with a large number
of warehouse locations becomes difficult to solve [13). 1In this paper, we
treat the space allocation problem as a continuous layout problem r33.
This is the approach taken in [k], (6], [10] and [12].

There is little loss in using the continuous approach. ‘The vast
majority of sutamated warehouses which could benefit from this analysis
are large enough that "rounding off" a continuocus solution to fit the
sctual discrete locations in the warehouse would not affect the actual
solution objective function grestly. The coatinucus approach has the
important advantage of relative ease of solution.

Consider a production vector (Ql, Qs eees Qh)’ vhere Qi represents
the production lot size of product i (we suppose that the compeny produces
n different products). The total yearly production, inventory carrying,
and material handling cost for this production vector can be expressed as:

TRy, +ees Q) -1'5‘1 P, (Q,) +1§1 L(Q) + MQy, «.vy Q) ()

vhere Pi(qi) represents the yeardy production cost of product 4
(as a function of Qi)’ Ii(qi) represents the yearly inventory carrying
cost of product i (as & function of Qi)’ and M(Qi, ceey Qn) represents
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the minimum yearly material handling cost as a function of the production
vector. That is, given the production vector, M represeats the material
handling cost which results from an optimal (cost minimizing) storage scheme.
Note that we have treated the production and inventory carrying costs as
separable by product. In genersl, this is not a bad assumption if

sufficient production cepacity is available. However, the yearly material
bandling cost is not separable since the material handling cost for product i
depends not only on Q,, but also on all Qj, J #1. This dependence is
easily seen by noting that material handling cost arises from the storage
and retrieval of items in a warehouse. The cost for movement of item i
depends upon the amount of warehouse space required for items other than
item i.

Under the classical derivation, the functions Pi(q'i) and Ii(qi)
are convex functions of their arguments. In general, the function M(Ql,
ceny Qn) is not a convex function of (Ql, eoey Qn), but by treating
the space allocation problem as a continuous layout problem, and assuming
that material handling cost is a linear function of the distance between

item location in the varehouse and the warehouse input/output (I/0) point
(loading dock), we can derive a closed form expression for M(Q.l, veny Qn),

once an “"ordering” relation between the Q is determined. PFor a fixed ordering
of the Q, M(Q, ..., Q) is aifferentisble.

The main advantage of tresting the problem as formulated in (1) is
that the problem size is drastically reduced over the formulatioa as given
by Wilson. In Wilson's formulation if there are m discrete storage loca-
tions, then the mumber of varisbles is m times the number of products.
Under the formulation in (1), the number of variables is equal to the num-

ber of products.




At this point we give a brief overview of the paper. In Section 2 we

outline the assumptions and notation used in later sections. In Section 3

we analyze the underlying problem when the crane travel is assumed to be

rectilinear or Tchebychev [12], and formulate (1) for this cese. We provide
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an algorithm to find locally optimal solutions to the resulting problem and !

e

,i. : give camputational results. In Section 4 we examine a special case of the
problem formulated in Section 3 and relate the resulting problem to a single E
' “11 processor scheduling problem. Globally optimal solutions for this problem |

can be efficiently obtained for medium sized prodlems (n < 25).
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2. Assumptions and Notation

As mentioned in the previous section, we will treat the storage
nasignment problem ns a continuous layout problem. We assume that
during each storage trip from the I/0 point to the storage area, the
stacker crane will carry only one item. Further, during any retrieve
trip, only one item will be transferred from the storage area to the I/O
point, We also assume that the material handling system operates with no
interleaving. This basically means that the crane returns to the I/0
point between simultaneocus move requests (either store or retrieve). The
material handling cost for an individual trip to or from the storage area
will be a linear function of the time involved in the trip. We allow
for the possibility that each item may have its own linear function.
1et ti be the cost, per unit of crane travel time, for item i. The actual
time for material loading or unloading is ignored. As is pointed out in
[6], these times are small compared to crane travel time. We analyze a
system which consists of a single crane and one storage rack (area).

It is easiest to visualize the storage area as s plame oriented in

the vertical direction (see Figure 1). The analysis is easily extendable

to the case of a single crene serving a single two sided aisle, however
this case unnecessarily complicates the analysis,

In this paper we assume that the production cost function Pi(Qi) ie
of the classical form. That is, if 1)i is the yearly demand rate for item i
and if c, is the setup (or order cost) associsted with each lot of item {,

then Pi(Ql) = ci D1/Qi. We remark that more complex production cost




functions can be handled. Similarily, we could consider more complex
inventory carrying cost functions, but we assume that Ii(q'i) = k1Q1/2,
where the coefficient kirenects the cost of item 1, the company's cost
of capital, etc. Since we will be dealing with storage area for each of
the jitems, let Airepresent the area necessary to store one unit of item i,
The form of the function M(Qi’ ceey Qn) in (1) will be dependent
upon the crane travel assumptions, and the physical dimensions of the
storage area. In Section 3 we analyze the problem under the assumption

that the crane can travel, simultaneously, both horizontally and vertically.
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3. Tchebychev Crane Travel

In this section, we assume that the 1/0 point is located in a corner
of the storage area (as shown in Pigure 1). PFurther, assume that the
crane can travel, simultaneously, in both the horizontal and vertical
directions. Let (0,0) be the coordinates of the location of the I/0
point, and any point in the storage area has coordinetes (x,y), where
x>0, y>0 (See Figure 1),

Let vland v, be the horizontal and vertical speed, respectively, of
the crane. If an item is stored at location (x,y) in the storage area, the
total time for the crane to travel between the I/0 point and the location
of the item is max [x/vr y/ve}, and the total crane travel time for storage,
and eventual retrieval of this item is 4 max {x/vl, y/v2], where the number
b reflects two round trips between the I/0 point and the location of the

item.

To obtain insight into the problem, we will initially formulate
expression (1) for the single item case; thus, suppose n=l. For a fixed
value of Q> it can be shown (see [3]), that under the assumption that the
material handling cost is linear in travel time, the optimal storage layout
for the single item is a region, of area Alql’ enclosed by a contour of
the function f(x,y) = max [x/vl, y/v2}. Following the develomment in (3],
let z be the functional value of a contour of f. The area, q(z) of the

optimel storage region can be expressed as a function of time by q(z) = vy

Since the total area of the storage region must equal AIQ‘J.’ set A1Q1 = vlvaz .

Thus, the value of the function f at the boundary of the storage region
18 7z = (A1Q1/v1v2) .
The average time for the crane to travel from (to) the I/0 point to

2
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(from) the location of one unit of the item in the specified storage
2 S region is (see [3])

)I (A% /%v,) 3
(A/MQ N, (2vyv,2)z dz = (2/3)(AQ /7 v,)%.
Since for each item the crane makes 4 one-way trips between the loca-
; tion of the item and the I/O point, and since D, items are "turned over"
R

in the storage area per year, it follows that the total minimum yearly

material handling cost, M(Ql) is given by
MQ) = (8t D, /3)(A,Q fryv )R,
| Prior to formulating and analyzing the n item case, we demonstrate that

the minimization of (1) for the case n=l over Q 3 0 1s relatively
straightforward.

Although P1(01) - clnl/q1 and 1,(Q,) = 501/2 are convex in Q,, it is

clear that "(Q:I.) is not convex in 01. However, we show that there exists

& single local minimum of T(Q,) over Q > O and thus any of & variety of
=

Bt

one dimensionsl search procedures (see fg7 or M1}] will minimize T(Qi)‘
Ietf, = C,D, B, = xl/a, and g, = (8t1D1/3)(A1/v1v2)'!,

where clearly a1 >0,1i=1, 2, 3, Thus,

| Q) ® 81/ + 8% + 05y, @

Property 1 There exists a single local minimum, o{, of 7(e,) on

{O,llQl; o}.

Proof: Since T(Q.l) -~ o as either 0‘1 - 0 or Ql - + @, and since T is

PP USHS-SE P,

continuous and is finite for any positive finite QJ.’ it follows that
there exists at least one positive finite local minimum of T.

Since T is differentiable everywhere on {O,l’Ql > 0}, T' = O at any
local minimum of T. Differentiating (2) gives

'r'(ql)--al/ol"’ +8, + p3q§/2. (3)




Por any'él >0, T (51) = 0 if and only if 61 T @) =0. Thus, miti-
Plying (3) by Ql and setting the result equal to zero gives QlT'(Q,l) =
'Bl/Q'] +52Q,1 +p3q,1i/? = 0. Since B; >0, 1=1,2,3, Ql'l"(ql) < 0 for suffi-
cently rmall @, > O and QlT'(Ql) > 0 for sufficiently large @) > 0. Further-
more, QIT'(QI) is strictly increasing on {Ql‘Ql ~ 0}. Since QlT.(Q]) iz con-
tinuous, it follows that there exists exactly one point O,ll ~ O such theat

Ql*T'(Ql*) = 0 and hence T'(Q‘.l*) = 0,

We remark that T(Ql) is psuedo-convex on {Qllal > 0} since (2) can be ]
written as ¢(Q1)/Q1, where ¢(Q1) is positive and convex on {Q1|Q1 > 0} (see
" 13, pp. 154-156). ?

We now formulate the n item case where we rely heavily on the notation
and development in [3]. ILet L= {(x, y) | x 20, y 2 0}, i.e., L denotes
the set of points in the storage rack. As before, the travel time function
to any point (x,y)€ L is expressed by f(x,y) = max [x/vl, ¥/v,}. Ve
now formulate a closed form expression for M(Ql s eoey Qn) at any f_}ﬂ
(Ql, ceny Qn). Let {Si, 1=1, ..., n} be a collection of nonoverlapping
subsets of L (a layout) such that the area of Si = Ai Qi’ i=1, ..., n.
Hn(L,A) denotes the collection of all such layouts. If item i is assigned

storage region si, the average one way travel time between the 1/0 point
and the location of an item i is 3

(1/A 1c¢1) I f .
5

The yearly material handling cost for item i is

(u)
e, /met

8
where ( 4) reflects 2 round trips for each item, D; items per year, and

a cost of t:l per unit time. For notational convenience in what follows,

10




define r, = Lt 1:1/Aicz1 Using (11), M5 -..5 Q) becomes

MQs .00y Q) = [,r f]
k! “ (815 -ons e | KH_(L,A) o 1f ¢3)

Due to the analysis in [3], the solution [s;, i=1, ..., n}, to the right
hand side of ( 5) can be found by:

1) Ordering the items such that
r[1] % r[i+l], 1'1, escsey n-lo ( 6)

1i) Defining s;l] as the region of L closest to the I/0 point,
enclosed by a contour of f; defining s&] as the region nesting
about BFl] and enclosed by another (larger valued) contour of f;
and 8o on (see Figure 2).
Using 14) and the definition of f, M(Ql, ceny Qn) can be found by
integrating the right hand side of ( 5):

MY oer Q) = @/ Z u{" har 42 C ‘5 z hg )
i-1

When { =1 in ( 7 ), we define .1A[J] Ql.JJIOuulco for the single
item case, ( 7) agrees with our earlier analysis. We emphasize the fact
that the ordering 1], ..., [n? in (7)) is dependent upon the values
Ql, coey Qn and so the functional form of M is known only after Ql’ cves Qn
are known.

Using (7 ) in (1) along with the assumed form of Pi(Qi) and Il(Qi)’ no
apparent conclusion can be made about the properties of 1'(0,1, ceey Qn).
Even though Pi(Qi) and 11("1) are convex, it is not clear that the right

11




hand side of ( 7) even for s fixed ordering [1], ..., [n]) of the items has

any desirable properties (such as psuedo-convexity) which could be exploited

in optimizing T(Q,l, PR Q.n). However, for a fixed ordering (1}, ..., {n)
of the itsms, the function genersted by adding the right hand side of ( 7) to

n
121 Pi(Qt) + II(QJ.)’ (8)

is differentiable, and hence at any local minimum the gradient vanishes.
We exploit this property in the following algorithm. We choose initial

positive values 01].', eooy Qi and order the items as [1], ..., {n) such that

( 6) holds st Qi‘, cees Qi We then form the function defined by adding
the right hand side of ( 7) to ( 8) end find a local minimm of this function.
If ( 6) holds at this local minimum with the initiel ordering, stop. Other-

wise reorder the items so that (6) holds (forming a new function) and find

a local minimm of the new function, etc.

Formally, at some iterate Qk = (Q,:, ceey Ohk], let ok be an ordering
of the items such that ( 6) holds and let 1,( be the function defined by

adding ( 8) to the right hand side of ( 7) with the ordering induced by

ok. Let 'rk‘be the function value of’l'kutalocunlnimmot 'rk Define

s * » (Q:f]'..., l"']'} the vector which attains ™.

Step 1  Choose an initial starting point 0,1 > 0. (A natursl starting

e aa T R io S et raa e

point is somc fraction of the solutinn obteined by minimizine
(P). Set k = 1 and determin~ o"‘.
Step 2 Form T'.

Step 3 Find a T ana &%,
k+1. 1f pk+1

= ok, stop. Otherwise, set k =k + 1

Step 4 Dpetermine p

and go to Step 2.
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In the above algorithm, at some iterate Qk, it may be the case that
more than one ordering of the items satisfies ( 6). In this case we adopt

the convention that pk is any ordering of the items which satisfies ( 6).

In Step 4, by % « ;* ve mean that ££[1], 1 =1, ..., 15 the ordering

4 k+l kel
the {1 g
of the items induced :ylp » then ot @ °, DfthfiJ/AEiJQ"ﬂ F
<+

i’lJ (1*11 /A[i-#l“q[i.. wqs 4=, ..., n-d.

A property of the algorithm is that the objective function strictly decreases

et each transition from Step L to Step 2 (reordering of items). The reason

for this is that pk+l = p* 15 & necessary condition for optimality., We
establish fhis fact in vhat follows.

Consider any Q = {Q.l, cees Q}, vhere Q>0,1=1, ..., 0. Inii)

let (1) =i, i =1, ..., n and let (El, cens ‘S‘n) be the member of B (L,A)
defined by 1i). That is, the sets 'sZ1 are enclosed by contours of f and
§1 ) hests about 81, i=1, ..., n-1,

Suppose that for some j < n-1, r J .1 4 et (31, ceey ‘én) be the
nanberofB(L,A)wheres -sz fora.ut;‘dor:j-»l, 31
.1-1’ J nests about 8.1 a’ and SJ . and sJ are enclosed by contours of f.

nests about

(Generating {§ R s} from {'51, coes §] can be thought of as leaving

sluilrora.ul.;laord;l,findingthecontourottmehthtttheregion
.1 3.1.
enclosed by f, surrounding U S('U 8), uorma-AJdQJ‘lmdde-

f )
noting this rcu.on as 8 '% is thon the region surrounding 83*1 and

surrounded by u4 4 .) G:l.nn thu construct, we now establish a result
L=
vhich leads to a necessary condition for optimality.

13
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Property 2
§r fr- zr £ > 0.
1a & 'g ga 4 ’[ )
1 8
Proof: Since §, = §‘, £ § 3 or 341, the left hand side of (9) becomes |
ry [t + o It - 7y It -y {f . (10) ]
§J 534 8 85,
Without loss of generality, suppose that AJQJ J ey J a’
Adding '
rafr-ragr:,rdl‘r-rh[f ,
5 Sa %54 Ba
which equals zero, to (10) gives
(ry_l-r)gf (ra_l-r)j'r-rrdgf - Jj'f . (n);
341 B, EpE,, BB 3 |

Since §Ju - §Ju ..1+1’ (11) is equivalent to

(F300 - :’[f’ [’] a2)
J+1 J+1 1
mtothonctmttuctucuymmsmnmmmmz
originating at (0,0) and further that the ares of § -lmofsj,u-u
ot!ad-uuotsal.muuorsal>uuors,s.trmmmt
for arbitrery (x,y) € Jdndmttrm (x,7) €8 Yy

2(x,7) 3 2x ,7 ). (13)

Furthersore, there exist subsets of equal positive ares in 5, . and

SM over which (13) holds at strict inequality. Thus the term in brackets
in (12).1. strictly positive. Since r
than sero, establishing (9).

.1¢1'r.1’°’ (12) 1s strictly greater

b L
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Property 2 1s the key to the following result which establishes that
the heuristic is strictly decreasing in each iteration.
Property 3 If o° 4 p"*, then

™ - %o, (ak)

Proof: By definition, T = T(Q*!). In sdaition, it follows that

7*1(Q*2) > 1%, ana thus to establish (14), 1t 1s sufficient to show
that
:l'k( k+l - 1Jwil.(q'k-!»:l.) s 0. (15)

Without loss of generality, suppose that pk induces the ordering [1] = 4,

i=1, ..., n. Since pk # pk+1, there exists some J ‘ n=1 such that

r. <r vhere the r terms are evaluated at Qkﬂ

J 3«1
only one such j with this property. Thus the ordering p e.n be cbtained

by interchanging the order of J and J+l.

. &appou that there is

mtothoronbrr"mdr“*l

kely _ pkeloktly ¢ - e, (16)
*@h - e 151’1£ zrii'

i

vhere (8} and [31] are as in Property 2. But, by Property 2, the right

band side of (16) is strictly greater than zero. Thus (15) and hence (1k)
holds.

Inthemcwhorethoreu-orethtnone.j<n-1vherer3< , the

r
N
ordering p ccn be obtained by meking pairwise interchanges of "adjacent"”

items where this property holds. Bach such interchange strictly decreases

the material hamndling cost associated with the generated layout. ‘Tus (1h)

holds in thin cane an well.
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A FORTRAN program implementing the algorithm has been written and
tested on the AMDAHL 470 computer. In the algorithm, Newton's method [14]
was used in Step 3. Fifty-eight problems with n = 5 were run with an aver-
age computation time of .02 seconds per problem. In these problems Ai =1
for all i; Ci, D,, k, and ¢

i i
problems required at least one reordering of the items (transition from

were randomly generated. Seventeen of these

Step L to Step 2) prior to termination. In one problem (.03 seconds) the
items were reordered U times and the total cost was reduced by one half

(initial solution was evaluated at the EOQ values for the items). To test
computetion time sensitivity to the size of n, problems of various dimen-

sionality were run. The results of these tests appear in Teble 1.

16

D . o STER e ot P e YT

i




4. Travel Dominance

In this section, we formulate and analyze a special case of the model
presented in Section 3. We also discuss procedures to find the optimsl
solution vhich are computationally feasible for medium sized problems.

As in Section 3, suppose that the crane travel is Tchebychev with
borizontal and vertical speeds of '1 and v, ,respectively. As before, let
L denote the set of points in the storage reck. Given any point (x,y) €L,
let dl(x,y) and d.a(x,y) be the horizontal and vertical distances, respect-
ively, from (x,y) to the I/O point. The basic assuption in this section
is that either:

4, (x,¥)/v; 3 d(x,7)/v, for adl (x,y) ¢, ST

or &(x,y)/v, 3 & (x,7)/fv, for a1 (x,y) €L. (18
The essence of (17) or (18) above iz that either the horirontal travel
time dominants the vertical travel time or vice versa over every location

in the storage rack. In this section, we assume that (17) holds. This
situation could occur for several ressons. First, suppose the 1/0 point

for the crane is located at the' end of a conveyor belt which is not
adjecent to the storage rack but instead is of horizontal distance W
from the storage rack. Purther, suppose that the height of the storage
rack is H (see Figure 3). Then, if simultaneous horizontal and vertical
travel is allowed between the I/O point and the storage rack, and if
"/'1 2 B/v,, then (17) always holds. This is due to the fact that for 1
sny (x,5) €L, 4,(x,y) 3 W and 4,(x,y) < H and thus

&, (x,7)/v, 3 Wiy, 3 B/v, 3 4,(x,3)/v, establishing (17). In enother
situation, it may de that the hdrizontal speed of the crane, vy i{s much

slower than the vertical speed, v,. In this case t!.‘l.(x,y)/v1 "approximates"”




the travel time to eny point in L.
We now formulate the model assuming that (17) holds. Referring to

Pigure 3, the I/0 point has coordinates (0,0). Any point (x,y) €L has

coordinates W< x and 0 < y S H. Due to (7)), x/v 3 y/venllso

the one way travel time between the I/O point and (x,y) €L is f(x,y) = x/vl.

Noting that the contours of f are vertical lines, it follows thet the solution

(S35 S35 -ees S') to the right hand side of ( 5) for & given (Q, -.-s Q)

can be found by ordering the items such that (6) holds, and defining
BEI] = {(x,y)EL ' WSxgW+ (%ljﬁll)m’ 0<y<H], and

» J-1 J
fgy " () €TV 4 2 Ay QMg xS Wl Ay 05y 58,

J =2, couy m. a9)
A closed form expression for M(Ql, ceey Q“) can be found by using (19)

in ( 5), carrying out the integrstion in ( 5), and rearranging terms:

My -+ ) = E Wratan/

* (A (Mragra) + Sapfrey * o ¢ Bpm)al it |
* (aytpey)(Mpagey + Sragfsy * o+ Bogaay /0"

+

* (Qeaghny)Magay V20"

with the understanding that ( ¢) holds.

We nov formulate (1) for this travel dominance case with Pi(qt) and

Ii(Q.t) as before. Using (20), we obtain, upon rearranging

n n
LCTRRTE Y ,’;'1 h 3L SRR AL IV &

-+1

+ z (Qtil/e)(kti] + (Atilhln)(ut[ll&’.] + 8(: Jﬂj]))’
18 (@) |




AT We emphasize that the right hand side of (21) 1s a valid description
‘ 1 “T.t (%’ ooy %)’ Qd>°’3'1’ esey n, 1fw1f the 1t-' are
indexed such that ( 6) holds. Note that the first term in (21) is constant

| for any ordering of the items and thus the 'T]" notation can be dropped

s from this term. Also, for any fixed ordering [11, (21, ..., [n] of items,
the right hand side of (21) is convex, differentieble and separable.

-{ Furtber, for a fixed ordering of the items, the values of q!'.'ﬂ, Je1, «o.pn

bl that minimize the right hand side of (21) are easily obtained from the

now classical EOQ formulas.

~. The above discussion suggests a procedure for finding the minimum of
_»V', | T(Q'l’ vens Qn)' let P = (pl, Pys ovey Pn} be & permutation of the integers

*
1, 2, ..., n. let (Q*Pl, vees Q Pn) be the values of (qpl, ey Qpn) which -

j ‘ ainimize the right hand side of (21), where P, replaces 1] in (21). Define

: | T*P as the value of the right hand side of (21) at (Q*P s coep Q*P ). Then
1 the minimum of '!(Q_l, coes Qn) can be found by solving ! °
atn T
} s.t.
r’d > rpj-rl’ J=1, ...y n, (22)
where :-Pk is computed at Q;k.

Thus, to find the minimum of ‘1‘(01, cony Qn). we could generate every

permutation P = {P), ..., B,} of the integers 1, ..., n, find T} for a1 P,
and choose from among those permutations P where (22) holds, the permutation
yielding the minimm 1';. However, it follows from Property 3 that (22) mast

Bold at (Q'p , ...y Q'p ) 4F P 48 the optimal permutation. To see this, 1t
1 n

i 19
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follows from Property 3 that if (22) does not hold for some J < n-1, the
ordering of J and j+1 can be interchanged thereby decreesing the material
handling portion of T. Thus it is only necessary to compute T; for all per-
mutations P and choose the smallest.

For a fixed permutation P, T; and (Q;,l, cees Q;n) are easily obtained

for the following formulas:

3
* p n
Qpi = [2CP1DP1/(kP; (AP{VIH)(htngi*' 8(3-§+1tpjnpj ) )] > i=1, ..., n, (23)

n

i=}
L (k, + (A, fr,H)(W.D. +8( » t. D )))]% (2k)
T 2C. D k + (A H + by .

Ty 0P y By By L R J=isl Py Py

Note that (23) and (24) are closed form expressions in terms of the
date. Thus, solving the problem involves computing (24) for every permu-
tation, P, selecting a permutation which gives the minimum r; and then

choosing the optimal item quantities sccording to (23). Obviously, this

procedure involves O(n!) computations, which is computationally feasible

for relatively amall problems.

We now outline a computational procedure which involves somevhat less

work than the above. The above problem can be interpreted as single pro-

cessor scheduling problem with monotonic increasing deferral costs. Pur-

suant to this goal, for a given permutation, P, define for i=1, ..., n,
vp Tt D @ ®2C p_ (k - (bAg vy )/¥.H)); and g ® 16C_ D _A_ /v H.
o Py RTR TTRR R Py RN P PpRRL

With these definitions, (24) becomes

» B n 3
T,=K+ 2 »

(25)

20
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where K is the constant 1§1 Wyp /vl. The interpretation of (25) ss a sched-
i

uling problem is relatively straightforward. vp Tepresents the “process-
i

ing time" of Job Pi' If Job Pn is sched::l.ed first on the machine, jodb
Pn-i second, ..., and jodb P:I. last, thenafivp represents the "flow time"
of the job which is scheduled in position n-i+1 on the machine.
presents a unit penalty cost of flow time. We can think of api as repre-
senting "off-machine” time (perhaps time to package the job after it is
completed). Finally thé square root function represents the incressing
deferral cost function (as a function total time in the shop).

Baker [2] and Lawler [8] have outlined a dynsmic programming procedure
to solve very general single machine sequencing problems. 8ince the deferral
costs are monotone nondecreasing and (25) is additive, the dynsmic program- _
ming procedure can be applied. Iawler [8] points out that the computational ‘i
effort of the dynamic programming procedure is 0(n2") and that problems of
size n < 15 are computationally feasible. RNote that the solution to the
dynamic programming procedure will be a sequencing (1), {27, ..., [n] of

the "jobs" and thus the optimal ordering (permutation) of the items will be

the reverse sequence.

More recently, Shwimer [A1) outlined a branch and bound approach to
the genersl single machine sequencing problem, While the computational
limitations of this approach are not encoursging (practical limits appear

to be on the order of 20-25 jobs), "good" heuristic solutions should be
readily svailsble for larger sised problems.
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